Jump to content

Recommended Posts

Oki, je savais pô. J'vais éditer mon message du coup :chinois:

Pour les BR, le seul truc que j'ai regardé (et qui m'a paru différencier les lecteurs), c'est le cache du lecteur. J'ai vu que ça allait de 2 à 8 Mo donc j'ai coupé la poire en deux et pris un modèle à 4 Mo.

Bon ensuite je voulais pas un truc à 100€ non plus et le bruit n'est pas un problème pour moi : je regarde toujours mes films au casque :transpi:

Link to post
Share on other sites
  • Replies 12.5k
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Popular Posts

Un moniteur G-Sync 3440x1440 que je vais fixer au mur parce que le pied est immense. Le nouvel Acer X34P (Pbmiphzx) : je sors de l'hôpital, j'ai vendu un rein

Tu aurais pu préciser qu'Empiflor était un Pokemon : j'ai cru que c'était quelque chose d'important que je ne connaissais pas en botanique 🙂

dans notre cas ..............des voisins casse couilles  en plus c'est gratuit comme les morpions 

Posted Images

J'ai vu que ça allait de 2 à 8 Mo donc j'ai coupé la poire en deux et pris un modèle à 4 Mo.

middle = x_start + [(x_end - x_start) / 2.0] = 2 + [(8 - 2) / 2.0] = 2 + 3 = 5 :siffle:

Il y a un autre calcul plus simple : ( 2 + 8 ) / 2

:simple:

Link to post
Share on other sites

Ca passe pas encore la lecture BR dans MPC-HC ? (puisque pour VLC c'est enterré chez Hadopi)

Mon graveur Blu-Ray externe de Samsung me fournit un pack des logiciels de Cyberlink en gratuit :D

Avant installer ce pack des logiciels, j'avais testé avec MPC-HC, ça fonctionne mal malgré qu'il sait lire des Blu-Ray.

Link to post
Share on other sites

Il y a un autre calcul plus simple : ( 2 + 8 ) / 2

:simple:

Soit A = 2 et B = 8. Soit x0 = x + yi dans le plan complexe.

Le vecteur (X0,A) a pour coordonnées 2 - x - yi, et le vecteur (x0,B) a pour coordonnées 8 - x - yi. Le vecteur (x0,A) + (x0,B) a donc pour coordonnées 10 - 2x - 2yi.

Soit C = 5. Le vecteur (x0,C) a pour coordonnées 5 - x -yi. Donc (x0,A) + (x0,B) = 2 (x0,C) quelque soit le complexe x0.

C=5 représente donc le milieu du segment [AB] dans le plan complexe, CQFD :chinois:

Link to post
Share on other sites

Il y a un autre calcul plus simple : ( 2 + 8 ) / 2

:simple:

Soit A = 2 et B = 8. Soit x0 = x + yi dans le plan complexe.

Le vecteur (X0,A) a pour coordonnées 2 - x - yi, et le vecteur (x0,B) a pour coordonnées 8 - x - yi. Le vecteur (x0,A) + (x0,B) a donc pour coordonnées 10 - 2x - 2yi.

Soit C = 5. Le vecteur (x0,C) a pour coordonnées 5 - x -yi. Donc (x0,A) + (x0,B) = 2 (x0,C) quelque soit le complexe x0.

C=5 représente donc le milieu du segment [AB] dans le plan complexe, CQFD :chinois:

Quand on calcule soi-même, il n'est pas nécessaire d'écrire des phrases avec des opérations de calcul. Ca ne fait que perdre le temps :embarassed:

Link to post
Share on other sites

Quand on calcule soi-même, il n'est pas nécessaire d'écrire des phrases avec des opérations de calcul. Ca ne fait que perdre le temps :embarassed:

J'aurai pu ecrire :

Soit C le point tel que 2(x0,C)=(x0,A)+(x0,B), on a donc 2(x0,C) = 10 - 2x - 2yi = 2 * (5 - x - yi), donc (x0,C)= 5 - x - yi, donc C = 5.

En vérifiant trivialement la réciproque (vérifier que C=5 est bien solution de 2(x0,C)=(x0,A)+(x0,B)), on prouve l'équivalence, et donc que 5 est le milieu du segment [2,8].

Et du coup C=5 n'est pas posé, mais bien calculé :dd:.

Link to post
Share on other sites

Please sign in to comment

You will be able to leave a comment after signing in



Sign In Now

×
×
  • Create New...