Posté(e) le 9 novembre 200321 a Salut a tous ! J'ai un petit soucis avec ce problème de Maths, si quelq'un peut m'aider se serai très Sympa Voilà l'énoncé : Cette opération comporte tous les chiffres de 0 à 9. Deux des nombres manquants sont divisibles par 5. L'un de ces deux-là est divisible par 97. 97 X _ _ _ = _ _ X _ _ _ Compléter la multiplication. [Tournoi de St Michel-En-L'Herme - 1998] Moi j'y arrive pas Merci de vous creuser les méninges pour moi
Posté(e) le 9 novembre 200321 a fo vraiment etre givré pour demander à qq1 de faire des math le dimanche soir
Posté(e) le 9 novembre 200321 a Auteur fo vraiment etre givré pour demander à qq1 de faire des math le dimanche soir je sais mais......... si quelqu'un a la réponse se serai cool merci Si tu ne sais pas : demande, si tu sais : partage !
Posté(e) le 9 novembre 200321 a bordel c un dsé bleme a la con... bon ... on va dire que les chifres manquants sont A,B et C on a donc : 97xA=BxC equivalent a 97=BxC/A on sait que au minimum 2 chiffres sont divisibles par 5...on va dire au hasard A et B donc la valeur minimale de A et B est 5....puis on va dire que parmi les 2 c B qui est divisible par 97...pour assurer la compatibilité entre les chiffres 5 et 97 on va donner la valuer minimale de 97*5=485.... donc A=5 B=485 et C = ? on reprend lequation : 97x5=485xC on peut en conclure que C =1 voila ma deduction....comment g trouvé que c B ? par simple logique ...ya qqun ka le resultat pour verifier ? EDIT : il est evident que il nya que C ou B qui puisse etre divisé par 5 et par 97 pour assurer la parfaite egalité par contre il est obligatoire que A soit divisible par 5 donc deux couples sont compatibles : "A et B" ou "A et C" ou "A=5" et "B ou C =485"
Posté(e) le 9 novembre 200321 a Je crois pas que tu peut réutiliser le même chiffre 2 fois, faut que ca soit tout les chiffre de 0 a 9. Enfin c'est ce que j'ai compris.
Posté(e) le 9 novembre 200321 a Je crois pas que tu peut réutiliser le même chiffre 2 fois, faut que ca soit tout les chiffre de 0 a 9. Enfin c'est ce que j'ai compris. ha merde ta raison lol bon je recommence et jreviens
Posté(e) le 9 novembre 200321 a Auteur ha merde ta raison lol bon je recommence et jreviens Merci beaucoup moi je ne suis pas un DIEU DES MATHS j'attend ta réponse avec grande impatience
Posté(e) le 9 novembre 200321 a Auteur une autre chose ! il faut que ce soit des nombres égal au nb de tiret : 97 X _ _ _ (3 chiffres) = _ _ (2 chiffres) X _ _ _ (3 chiffres) ce qui complique encore l'affaire
Posté(e) le 9 novembre 200321 a Bon 97x...=..x... 97 est premier , donc si les 2 nombres de droites étaient divisibles par 5 , 97*5k serait divisible par 5 , donc le deuxième nombre de gauche aussi => impossible , seul 2 des nombres sont divisibles par 5. DOnc : 97x(5k)=..x... De plus , 1 des 2 nombres de 3 chiffres doit etre un multiple de 97 et de 5 or : 97*5k : pour k=1 : 97*5=485 pour k=2 : 97*10=970 => impossible , 9 et 7 ont dejà été utilisés donc k=1 donc , soit : 97x485=(n2)x(n3) tel que 5|n2 ou 5|n3 Soit 97x(n1)=(n2)x485 tel que 5|n1 et après quelques bidouilles : 97x310=62x485 Dieu des Maths
Posté(e) le 9 novembre 200321 a Sabrolaser[=' date=09-11-2003 17:56:27] En fait :97x 5 x K = K x 97x 5 K=62 jaurais jamé parié que B soit un multiple de A bien joué
Posté(e) le 9 novembre 200321 a Auteur Sabrolaser[=' date=09-11-2003 18:53:02] Bon 97x...=..x... 97 est premier , donc si les 2 nombres de droites étaient divisibles par 5 , 97*5k serait divisible par 5 , donc le deuxième nombre de gauche aussi => impossible , seul 2 des nombres sont divisibles par 5. DOnc : 97x(5k)=..x... De plus , 1 des 2 nombres de 3 chiffres doit etre un multiple de 97 et de 5 or : 97*5k : pour k=1 : 97*5=485 pour k=2 : 97*10=970 => impossible , 9 et 7 ont dejà été utilisés donc k=1 donc , soit : 97x485=(n2)x(n3) tel que 5|n2 ou 5|n3 Soit 97x(n1)=(n2)x485 tel que 5|n1 et après quelques bidouilles : 97x310=62x485 Dieu des Maths :8 Merci Beaucoup les gars ! :8
Posté(e) le 20 janvier 200817 a Bonjour J'ai moi aussi ce problème mais j'ai trouve 3 solutions. Est-ce possible et si non, pourquoi ? 97 x 130 = 26 x 485 97 x 310 = 62 x 485 97 x 160 = 32 x 485 Merci mon devoir est à rendre demain !!!
Posté(e) le 20 janvier 200817 a en tout cas c'est un déterrage de malade Merci ça m'aide Bon 97x...=..x... 97 est premier , donc si les 2 nombres de droites étaient divisibles par 5 , 97*5k serait divisible par 5 , donc le deuxième nombre de gauche aussi => impossible , seul 2 des nombres sont divisibles par 5. DOnc : 97x(5k)=..x... De plus , 1 des 2 nombres de 3 chiffres doit etre un multiple de 97 et de 5 or : 97*5k : pour k=1 : 97*5=485 pour k=2 : 97*10=970 => impossible , 9 et 7 ont dejà été utilisés donc k=1 donc , soit : 97x485=(n2)x(n3) tel que 5|n2 ou 5|n3 Soit 97x(n1)=(n2)x485 tel que 5|n1 et après quelques bidouilles : 97x310=62x485 Dieu des Maths :8 Bonjour J'ai moi aussi ce problème mais j'ai trouve 3 solutions. Est-ce possible et si non, pourquoi ? 97 x 130 = 26 x 485 97 x 310 = 62 x 485 97 x 160 = 32 x 485 Merci mon devoir est à rendre demain !!!
Posté(e) le 20 janvier 200817 a La réponse est 42. Et pourquoi ? Tsss ... inculte qui ne connait pas le Guide du voyageur galactique ...
Posté(e) le 20 janvier 200817 a C'est possible, le dernier est divisible par 5 et par 97. Reste qu'à avoir un des deux autre nombre divisible par 5 et de vérifié si tu n'utilise qu'une seule fois le chiffre ainsi que le total soit égal des deux côtés. PS pour les autres : Le freepost c'est dans la section Café...
Archivé
Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.